
marshmallow-polyfield Documentation
Release latest

September 13, 2015





Contents

1 Installing 3

2 Importing 5

3 Example 7

i



ii



marshmallow-polyfield Documentation, Release latest

An unofficial extension to Marshmallow to allow for polymorphic fields.

Marshmallow is a fantastic library for serialization and deserialization of data. For more on that project see its GitHub
page or its Documentation.

This project adds a custom field designed for polymorphic types. This allows you to define a schema that says “This
field accepts anything of type X”

The secret to this field is that you need to define two functions. One to be used when serializing, and another for
deserializing. These functions take in the raw value and return the schema to use.

This field should support the same properties as other Marshmallow fields. I have worked with required allow_none
and many.

Contents 1

https://github.com/marshmallow-code/marshmallow
http://marshmallow.readthedocs.org/en/latest/


marshmallow-polyfield Documentation, Release latest

2 Contents



CHAPTER 1

Installing

$ pip install marshmallow-polyfield

3



marshmallow-polyfield Documentation, Release latest

4 Chapter 1. Installing



CHAPTER 2

Importing

Here is how to import the necessary field class

from marshmallow_polyfield import PolyField

5



marshmallow-polyfield Documentation, Release latest

6 Chapter 2. Importing



CHAPTER 3

Example

The code below demonstrates how to setup a schema with a PolyField. For the full context check out the tests. Once
setup the schema should act like any other schema. If it does not then please file an Issue.

def shape_schema_serialization_disambiguation(base_object):
class_to_schema = {

Rectangle.__name__: RectangleSchema,
Triangle.__name__: TriangleSchema

}
try:

return class_to_schema[base_object.__class__.__name__]()
except KeyError:

pass

raise TypeError("Could not detect type. "
"Did not have a base or a length. "
"Are you sure this is a shape?")

def shape_schema_deserialization_disambiguation(object_dict):
if object_dict.get("base"):

return TriangleSchema()
elif object_dict.get("length"):

return RectangleSchema()

raise TypeError("Could not detect type. "
"Did not have a base or a length. "
"Are you sure this is a shape?")

class ContrivedShapeClass(object):
def __init__(self, main, others):

self.main = main
self.others = others

def __eq__(self, other):
return self.__dict__ == other.__dict__

class ContrivedShapeClassSchema(Schema):
main = PolyField(

serialization_schema_selector=shape_schema_serialization_disambiguation,
deserialization_schema_selector=shape_schema_deserialization_disambiguation,
required=True

)

7



marshmallow-polyfield Documentation, Release latest

others = PolyField(
serialization_schema_selector=shape_schema_serialization_disambiguation,
deserialization_schema_selector=shape_schema_deserialization_disambiguation,
allow_none=True,
many=True

)
def make_object(self, data):

return TestPolyField.ContrivedShapeClass(
data.get('main'),
data.get('others')

)

8 Chapter 3. Example


	Installing
	Importing
	Example

